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Abstract
Circadian rhythms are 24-h oscillating variations in physiology generated by the core circadian clock. There is now a wide 
body of evidence showing circadian regulation of the immune system. Innate immune cells contain the molecular circadian 
clock which drives rhythmic responses, from the magnitude of the inflammatory response to the numbers of circulating 
immune cells varying throughout the day. This leads to rhythmic presentation of disease clinically, for example the classic 
presentation of nocturnal asthma or the sudden development of pulmonary oedema from acute myocardial infarction first 
thing in the morning.

Introduction

The earth’s rotation provides cyclical light:dark phases that 
have provided contrasting environments for cellular life to 
partition its pathways, especially those of metabolism and 
immune defence. Whilst it is posed by some that circadian 
rhythms evolved from peroxiredoxin responses [28] to oxida-
tive solar stress, they are a feature in all three domains of life 
— eukaryotic, prokaryotic and archaea [28]. These rhythms 
can be intrinsic (cycling patterns of protein synthesis and 
degradation), light-driven or intrinsic with modulation by 
feeding. Examples can be found across the animal kingdom.

The innate immune system is an early line of defence 
against pathogen exposure and does not require previous 
exposure or ‘memory’ of the pathogen to be effective. Fea-
tures of it persist across the animal kingdom [75]. It consists 

of antimicrobial peptides [50], pattern recognition receptors 
[41], cytokines [98], complement [25] and phagocytic cells 
[35]. In higher animals, the presence of cells with oxidative 
killing (e.g. neutrophils) can lead to tissue damage [51, 67]. 
Given this oxidative stress, and the origin of the clock as 
an oxidative stress buffer, circadian modulation of innate 
immunity has been proposed and studied, in animals.

A landmark paper by Halberg in 1960 [39] demon-
strated that lethality in a mouse model of inhaled endotoxin 
(lipopolysaccharide) varied depending on time of day. The 
Ray group has shown that knocking out the clock compo-
nent Bmal1 in mouse myeloid cells [48] is protective against 
streptococcal pneumonia. Other studies have gone on to con-
firm that caecal ligation puncture in mice also has a circadian 
susceptibility — worse in the dark phase [40]. Similar has 
been shown in the flounder fish [114] — Bmal1 knockout 
enhances pro-inflammatory cytokines and improves survival 
in bacterial infection [114]. Moreover, illumination at night 
has been shown to affect both clock genes and inflammatory 
cytokines in zebra finches [4, 70].

The therapeutic interest in clock targets is their modula-
tion of the inflammatory response, reviewed in this article, 
and mediation of oxidative stress defences. Because of the 
therapeutic value of these targets to human drug develop-
ment, the review will focus on mammalian circadian circuits 
and their impact on the innate immune system.

In particular, photic regulation via the suprachiasmatic 
nucleus (SCN) and cell clock gene regulation of myeloid 
behaviour will be detailed, because these provide transla-
tional targets (Reverbα and RORα have agonists available); 
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information about the sympathetic nervous system, circadian 
rhythms and inflammation, is a large topic and was reviewed 
by Leach and Suzuki [56] recently. Lastly, entrainment of the 
liver clock via feeding cues will NOT be provided, because 
this is an ongoing topic and has been provided a mini-review 
very recently here [72].

Feedback regulation

The molecular circadian clock consists of two interlocking 
transcription-translation feedback loops (TTFL) that con-
verge on BMAL1 and CLOCK [93]. The basic mechanism 
involves transcriptional activation and repression, allow-
ing rhythmic activation and repression of target genes. The 
transcriptional activators are BMAL1 and CLOCK, and 
the repressors are PERIOD (PER1, PER2 and PER3) and 
CRYPTOCHROME (CRY1 and CRY2). The BMAL1/
CLOCK heterodimers also promote transcription of the 
nuclear receptors REVERBα/β and RORα [17] which form 
accessory repressive and activating loops respectively 
(Fig. 1).

Suprachiasmatic nucleus

The suprachiasmatic nucleus in mammals is considered the 
pacemaker circuit; lesions produce changes in sleep [113], 
circadian rhythm [27] and melatonin output [89]. Ex vivo 
SCN neurons still show phasic output [105]. A considerable 
proportion of SCN neurons are light responsive [38] — their 
electrical activity coincides with the light phase [68]. Light 
exposure entrains SCN output [23].

The SCN network’s output has a sinusoidal pattern; how-
ever, its relationship with behaviour depends on whether the 
animal is nocturnal (SCN activity nadir occurs with active 
phase) or diurnal (SCN zenith occurs with active phase) 
[16].

A number of clock genes within the SCN are light respon-
sive, for example Per1 and Per2 [95]. This has raised con-
cerns within ecology for the effect of dim evening light on 
urban animals — for example birds. Dim light at night has 
been shown to alter per2 expression in the hypothalamus 
of zebra finches [4], in addition to reducing tlr4 and il-1β 
mRNA transcripts. In association was loss of standard 24-h 
cycles of clock, ror-α and cry1. The emphasis of dim light at 
night in zebra finches was confirmed to alter cytokines IL-1β 
and IL-10 in a separate study [70].

The effect of clock-gene changes on cytokine expres-
sion is not unique to birds and has also been demonstrated 
in zebra fish, where the genes period1 and period2 alter 
cytokine expression and per1b alters neutrophil recruitment 
[88].

There is consistency in mammals regarding photic influ-
ence of immunity. For example, mice kept in constant dark 
conditions show three times the mortality of those with a 
typical light:dark cycle, although this is independent of the 
myeloid expression of CLOCK or BMAL-1 [54]. Further-
more, mice in a caecal ligation puncture (CLP) model of 
sepsis demonstrate less severe sepsis and organ injury when 
exposed to high-illuminance blue light [59], which mim-
ics early morning light. The same paper discusses a small 
number of human patients with appendicitis exposed post-
operatively to blue light and found a significant reduction in 
cytokines such as IL-6 and IL-10, although the number was 
too small to comment on clinical outcomes.

Fig. 1   Schematic of 
BMAL1:CLOCK gene tran-
scription and feedback
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One of the key differences in mammals is whether they 
are diurnal (like humans) or nocturnal, e.g. mice and ham-
sters. This is important because it has previously been shown 
that BMAL1 and PER2 in humans/mice are antiphase from 
one another in expression [58]. This may reflect that circa-
dian regulation reflects behaviour/activity in an organism 
rather than simply external night or day — in the case of 
immunity, pathogen exposure and injury are of course more 
likely when out hunting/foraging/socialising, than sleeping.

In the case of rats, both constant dark and constant light 
produced worse mortality in caecal ligation puncture sep-
sis than a standard light/dark cycle [13]. Standard 1-week 
mortality was 83% in cycling conditions, 62.5% constant 
light and 31% constant dark. In these rats, non-survival was 
associated with an early peak cortisol in relation to plasma 
ACTH — the authors’ conclusion was external light cues 
modified the hypothalamic–pituitary–adrenal axis. Consist-
ent with this is similar evidence in mice that constant dark 
conditions exacerbate sepsis lethality [54], and for these 
authors, this change was independent of myeloid clock 
genes, suggesting a clock gene-exogenous pathway.

Interestingly, human shiftworkers have been shown to 
have an increased susceptibility to infection [63, 64] which 
may in part be explained by the light-at-night phenomenon 
seen in other species (mammals, birds and fish). There are 
also important implications for patients, who often experi-
ence dim lighting rather than true dark conditions, especially 
in intensive care where monitors and procedures interrupt 
‘dark’ conditions.

That said, interventions attempting to re-entrain patient 
circadian rhythms with light have only been done in a small 
number of patients in critical care, measuring a melatonin 
metabolite; the study contained 22 patients and suffered 

with attrition, although it did show an improved phase/syn-
chronisation [34], but was unable to comment on clinical 
outcomes. Other interventions using light exposure have 
not been shown to affect a particular outcome of concern, 
delirium [96, 97].

We will go on to discuss circadian behaviour in innate 
cell subsets, with respect to neutrophils and macrophages. 
Further reviews with a wider scope have been published [5, 
12].

Neutrophils

Neutrophils are phagocytic cells, whose origins may have 
been as far back as cnidarians — evidence of phagocytotic 
activity is evident in some species of coral [78]. In humans, 
up to 1010 neutrophils are produced daily [100]. Number and 
percentage of neutrophils appear to vary by species — in 
humans, they represent 40–50% of the total leukocyte pool, 
whilst this can be considerably different in other species 
[33]. There is little published data on circadian immunol-
ogy in cnidarians, who do however have light responsive 
transcriptome responses [55]. However, there is evidence in 
mice [1], pigs [31] and humans [30] that neutrophil behav-
iour has a daily rhythm.

Features of neutrophil behaviour displaying circadian 
rhythms include egress under CXCR4 in humans [30], the 
NADPH oxidase enzyme used in oxidative burst killing [30] 
and phagocytosis [43] — reduced by 40% in constant light 
conditions in mice [43].

In mice, neural output through the sympathetic nervous 
system via noradrenaline affects expression of CXCL12 via 
B3 mediated SF-1 expression (Fig. 2) [69]. CXCL12 is a 

Fig. 2   Diagram from Méndez-
Ferrer et al. [69] demonstrating 
circadian regulation of circulat-
ing haematopoetic cells by 
CXCL12, via noradrenaline
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homing signal for the neutrophil receptor CXCR4 as well 
as important for bone marrow haematopoetic stem cells 
[99], and further reviewed recently as a key determinant of 
neutrophil trafficking [22]. Moreover, CXCR4 antagonists 
mobilise the haematopoetic stem cell pool in both mice and 
primates [32].

Evolutionarily, CXCR12 and CXCR4 are considered 
antecedent to a sophisticated immune system, with extant 
chemokines potentially deriving from the CNS [45]. CXCR4 
and CXCL12 both have a role in the development of the 
nervous system [71], and Cxcr4 knockout mice, in addi-
tion to high embryonic lethality, display profound defects 
in marrow haemopoesis and nervous system development 
[65]. Human CXCR4/CXCL12 signalling shares conser-
vation with mice, and human CXCR4 knockin restores 
some of the leukocyte, and neutrophil, features of knock-
out mice [19]. This mouse line has been proposed as useful 
for CXCR-4-based human therapies. Noradrenaline has a 
circadian rhythm, as does adrenaline [61], and their com-
plex interactions beyond the scope of this review have been 
reviewed excellently by Leach and Suzuki [56]. The effect 
of such catecholamines on myeloid cells may explain why 
adrenalectomy removes diurnal rhythms in circulating blood 
leukocytes in mice [9].

One of the pathogen defences of neutrophils is NETosis 
— the production of neutrophil extracellular traps (NETs) 
which consist of chromatin and antimicrobial molecules 
[8]. Mature neutrophils have a circadian ‘responsiveness’ 
in NETosis, driven by CXCL2, in mice [2]. The circadian 
responsiveness was replicated in humans and correlated with 
pneumonia severity — offering a potential therapeutic or 
chronotherapeutic pathway [2].

The avian analogue of neutrophils, heterophils, is also 
observed to have a diurnal acrophase [66], whilst neutrophil 
injury recruitment in fish also has a circadian phenotype 
[87] suggesting these features are well preserved in different 
animals. The latter is influenced by melatonin, which has 
extensive pathways, reviewed with respect to immunity and 
inflammation previously [12, 14, 101, 110]. Examples of 
how melatonin may influence immunity, however, through 
increasing the weight of immune organs [81], reducing neu-
trophil apoptosis [73] and increasing neutrophil burst killing 
[82].

Macrophages

Macrophages are phagocytes of the innate immune system 
with tissue-specific fates and phenotypes [111]. They cir-
culate as monocytes for a number of days, before maturing 
into macrophages on receipt of external cues, when they 
may develop different subtypes [111]. In addition to recruit-
ment to sites of infection and damage, they are an intrinsic 

component of wound and tissue healing and regeneration 
[111]. They also have circadian transcriptomes and behav-
iours which affect function [46]. Post-translational circadian 
regulation of macrophage function is also seen, especially 
with respect to metabolic networks and mitochondrial mor-
phology [18].

Keller et al. established that spleen and lymph node-
derived macrophages contain autonomous cellular oscilla-
tors with 8% of their transcriptome being expressed in a 
circadian pattern [46]. Essential elements of importance 
are the lipopolysaccharide (LPS) receptor TLR4, TNFα 
pathway and other LPS-associated receptors such as CD14, 
MAPK14 and AP-1 subunits JUN and FOS, as well as 
ADAM 17.

Analysis of clock genes by Keller et al. showed that PER2 
and REVERBα display high-amplitude oscillations with 4- 
and 20-fold differences, respectively, at peak and trough lev-
els in macrophages. In peritoneal macrophages especially, 
mRNA transcripts of PER2 and REVERB varied by as much 
as 100–300-fold. The corresponding changes in cytokine 
production (IL-6 and TNFα) showed threefold changes. 
These changes persisted even with removal or addition of 
glucocorticoid mediators [46].

In addition to variation in mRNA transcripts, absolute 
splenocyte counts vary in a circadian fashion in Keller’s 
study, demonstrating regulation of leukocyte trafficking.

Kitchen et al. demonstrated that clock knockout of the 
gene Bmal-1 in mice in macrophages presented a survival 
advantage in streptococcal pneumonia [48], partly through 
recruitment and phagocytosis. Thus, a basal fluctuation in 
circadian behaviour may tend towards important survival 
advantages.

Intriguingly, more recent work in mice has demon-
strated that the polarisation state of the macrophage (M1 
or M2) is associated with differential periodicity and 
amplitude in expression of clock genes themselves [115]. 
In the M1 state, transcripts of BMAL1 and PER2 are 
suppressed, with normal periodicity (just the amplitude 
changes), whilst in the M2 state, periodicity is length-
ened, whilst amplitude remains the same. This suggests 
an association between clock gene expression and behav-
iour — a pathway that may be target for treatments of 
inflammatory human disease, or even wound healing. For 
example, wound healing in Siberian hamsters has a clear 
circadian rhythm [10], whilst shifts in photoperiod reduce 
the number of M2-polarised macrophages in adipose tis-
sue in mice [47].

This has direct implications for human shiftworkers, 
who have higher rates of obesity, diabetes, cardiovascular 
disease and cancer [90]. Other more novel implications are 
those regarding shiftwork, reduced fertility [108] and mis-
carriage [6]. As pro-inflammatory macrophages have been 
shown to affect number and quality of ovarian follicles [62] 
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and successful embryonic development [112], there is urgent 
need to clarify therapeutic targets in this group of workers. 
In 2018, in data published by TUC (Trade Union Congress) 
in the UK alone, night workers counted for more than 3 
million employees, or 1 in 9 workers, with the female pro-
portion increasing by more than 100,000 in the preceding 
5 years [102]; thus, this represents a considerable health 
burden.

Targeting clock genes in sepsis and other 
inflammatory diseases

This section will focus on REVERBα and RORa agonists as 
these are available and have some pre-clinical use.

Sepsis has been well studied in mouse models through 
a circadian lens. This began with the very early experi-
ments by Halberg et al. [39] noting a time-of-day lethality 
to inhaled endotoxin.

More recently, this has been observed in caecal liga-
tion puncture models of sepsis in murine models [40]. 
Mechanistically, this appears to coincide with cytokine 
levels, e.g. IL-6 — perhaps because the polymicrobial 
contamination in the peritoneum provoked the ‘cytokine 
storm’ that produces a SIRS response and multi-organ 
failure. Further experimentation revealed that a mutation 
in Per2 in these mice removed the circadian lethality, 
demonstrating a pathway under PER2 regulation medi-
ates this effect.

Aside from direct cytokine effects, further circadian 
influence over sepsis severity could potentially relate to 
activity of the inflammasome — an IL-1-producing assem-
bly. The receptor portion of this assembly of proteins is 
encoded by NLRP. REVERBα, the circadian nuclear recep-
tor, regulates production of this mRNA [84]. The inflamma-
some has recently been reviewed in sepsis [21, 109], as well 
as the epidemic virus SARS-CoV-2 [80, 103]. This poses 
the idea that circadian regulators may provide important 
basal resistors/enhancers of the inflammasome and there-
fore many inflammation-based diseases.

Another older study in hamsters demonstrated that photo-
period affected lethality to endotoxin [85] — short days were 
protective in comparison to long days. Animals exposed to 
short days had lower cytokine levels than their comparators. 
As with other studies on endotoxin [11], females survived 
long-day exposure better than male counterparts.

Together, these experiments, and those mentioned earlier 
in the review, demonstrate the influence of light and clock 
genes on components of the immune system and why they 
may be excellent targets for therapy.

The clock gene RORa has been shown to be a negative 
regulator of inflammatory behaviour in human macrophages 
[74]. When RORa is deleted, IL6, TNFa and IL-1 expression 

increase — the authors of this study propose therefore that 
RORa regulates the basal inflammatory state of macrophages. 
This idea is subserved by its role in murine models of inflam-
matory bowel disease, where deletion predisposes to chronic 
inflammation [77].

Moreover, a role in negatively regulating neutrophil activity 
and recruitment has been identified for rora in zebrafish [44], 
suggesting conserved relationships between clock genes and 
immune function.

Even more convincingly, a genome-wide association study 
in 28 human intensive care patients with sepsis identified 
blood leukocyte RORa as under-expressed and delayed in res-
toration, in high-severity versus low-scoring sepsis patients 
[15]. This is further corroborated by a gene and network 
analysis study performed in public data of paediatric sep-
sis patients [79], identifying RORa as one of fifteen master 
regulators that influence sepsis severity. The authors of this 
study highlight that downregulation of these master regula-
tors is causal for the sustained state of inflammation seen in 
severe sepsis.

REVERBα has also gained interest as a target in inflam-
matory diseases. Knockout models have shown us that loss 
of Reverbα, or its mutation, is pro-inflammatory. A knock-
out model demonstrates increased neuroinflammation and 
microglial activity (an innate immune cell of the CNS) that 
could be attenuated with the REVERBα agonist SR9009 
[37]. Meanwhile, a mouse model of pulmonary inflammation 
showed that mutating Reverbα causes increased pulmonary 
responsiveness and aggression in myeloid cells [17], whilst 
mutating its paralogue Reverbβ in bronchoepithelial cells also 
enhanced inflammation. Moreover, the inflammation itself 
caused changes in stability and degradation of REVERBα 
via SUMOylation and ubiquitination, showing there is a 
reciprocal relationship between inflammation and circadian 
rhythm, which could result in a wind-up phenomenon. Simi-
larly, Durrington et al. confirmed REVERBα as a gateway to 
asthma response, reflecting the importance of this pathway 
for pulmonary disease [26].

Gibbs et al. confirm that reduction in REVERBα increased 
IL-6 and other cytokines in human and mouse macrophages, 
whilst another group demonstrated that SR9009 (Reverbα ago-
nist) improves survival in a murine caecal ligation puncture 
model of sepsis [36], suggesting through mixed REVERBα 
and light studies that this was a pathway through which blue 
light improves survival in their model of Klebsiella pneumonia 
in mice.

Other roles for SR9009 have been found in cardiovascular 
ischaemia [86], inflammasome inhibition [42] and reducing 
the LPS-driven M1 polarisation of macrophages in pregnancy 
loss [20], demonstrating a persistent role for REVERBα in 
inflammation.
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Sexual dimorphism

Exemplified recently by the higher male lethality of 
COVID-19 [7], it has been recognised for some time that 
there is a sex difference in infection survival [3, 104] in 
addition to a sex difference in autoimmune disease, where 
80% of patients are female [91]. Since there are also circa-
dian differences in the two biological sexes, for sleep [106] 
and cycle length [24], there is growing interest in how sex 
and circadian rhythm intersect to affect immunity. There 
is not much published information as this is a relatively 
novel field.

There are sex hormone receptors in the human supra-
chiasmatic nucleus itself [52] and these are thought to help 
modify electrical activity in response to photoperiod/jet 
lag (female mice show faster photic entrainment [53]; 
the evolutionary benefit in a sex difference may be the 
female’s increased adaptability for childcare needs.

As has already been reviewed in other sections, there is 
evidence across species that the SCN/light input influences 
cytokine titres, so it is feasible that sex hormones influence 
immunity, via sex steroid receptors in the SCN itself.

A pre-eminent mechanism, however, might be the evi-
dence that sex hormones differentially regulate RORa 
(reviewed in a previous section). Oestrogen increases its 
activity whilst testosterone reduces it [92]. This could 
explain the preponderance of Th17-mediated diseases in 
female (humans) like multiple sclerosis [29], as well as 
a worse outcome from endotoxin exposure in male mice, 
and sepsis in human patients, although these all are likely 
to be multifactorial.

Sex hormones are likely involved as confirmed by cir-
cadian and sleep changes in both menstrual phase in mam-
mals [94] and pregnancy [76, 107].

There is also evidence of sexual dimorphism in humans 
of PER2 expression in the central nervous system [60], 
as well as altered amplitude in rhythmic expression in 
the murine adrenal gland [49] — evidence for adrena-
line/noradrenaline in influencing immune behaviour has 
been mentioned with respect to bone marrow pools, and 
reviewed in detail here [56].

Thus, there is a range of mechanisms by which sexual 
dimorphism in circadian immunity could be made mani-
fest. This field is evolving.

Discussion

It is clear that the regulation of inflammation is finely bal-
anced in health, with choreographed gene expression and 
tissue behaviour, modified by clock genes. Many of these 

pathways interact with each other, either through light, 
or the sympathetic nervous system, and can be rewired 
in inflammation. They are often conserved across animal 
kingdoms, suggesting they are important.

It appears that there are many ways the circadian immune 
system is influenced — be it gene expression secondary to 
native clock gene oscillation, output from the SCN via mela-
tonin, or adrenaline and noradrenaline, as well as corticos-
teroids, which were not reviewed here.

The field has developed from observation of circadian 
immune phenomena — like severity of response to pathogen 
exposure — to clarification of the cytokines involved, the 
recruitment and killing capacity of innate cells (e.g. burst 
killing, phagocytosis and NETosis), and the development of 
gene-manipulated mice. Evidence linking light, or circadian 
gene expression, to cytokines and disease survival has been 
provided in mammals, birds and fish. New gene sequencing 
and chromatin structure sequencing has allowed researchers 
to describe mechanistic links between light or time of day 
and protein expression. Proteome analysis has shown that 
inflammation can have reciprocal effects on protein stability 
and how inflammatory disease may rewire circadian circuits 
[83].

Furthermore, new translational drug opportunities have 
appeared with targets for REVERBα and RORα, which show 
promise in pre-clinical models.

Limitations in our knowledge are the huge complexity of 
multiplexed regulation — the intersection of light, baseline 
gene fluctuation, feeding status, sterile or non-sterile inflam-
mation, and the sympathetic nervous system. Furthermore, 
we also rely on ex vivo analysis of human cells, which no 
longer have access to the full complement of regulators 
available in vivo.

Moreover, many of our pre-clinical studies are based on 
mice, who are typically nocturnal. This may mean that alter-
ations in their immune systems following ‘resting phase’ 
interventions by human lab workers could contribute to the 
well-known failure of pre-clinical studies to translate into 
successful human therapies [57].

Dysregulated innate immunity is the basis for a number 
of inflammatory conditions that are known to affect humans. 
The effect of light and shiftwork, therefore, on innate immu-
nity has large health implications for shiftworkers, as well as 
reproductive health in women.

Furthermore, the effect of light on circadian dysrhythmia 
and immune systems has implications for ecology, e.g. light 
in urban areas, as well as for humans exposed to artificial 
lighting, both in health and disease.

Future directions may focus on translating pre-clinical 
therapies into humans, understanding the complex interplay 
of different in vivo systems — which may require computer 
network algorithm analysis — and the effect of sexual 
dimorphism, and age, on all these pathways.
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Given such a diverse array of diseases have demonstrable 
circadian rheostats, it is essential that we deepen our under-
standing of such pathways, to target treatments, and reduce 
medical and ecological burdens in a world where technology 
is competing with life’s reliance on environmental rhythms.
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